Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 16, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 30, 2025
-
Abstract Eurasia, home to ~70% of global population, is characterized by (semi-)arid climate. Water scarcity in the mid-latitude Eurasia (MLE) has been exacerbated by a consistent decline in terrestrial water storage (TWS), attributed primarily to human activities. However, the atmospheric mechanisms behind such TWS decline remain unclear. Here, we investigate teleconnections between drying in low-latitude North Atlantic Ocean (LNATO) and TWS depletions across MLE. We elucidate mechanistic linkages and detecte high correlations between decreased TWS in MLE and the decreased precipitation-minus-evapotranspiration (PME) in LNATO. TWS in MLE declines by ~257% during 2003-2017 due to northeastward propagation of PME deficit following two distinct seasonal landfalling routes during January-May and June-January. The same mechanism reduces TWS during 2031-2050 by ~107% and ~447% under scenarios SSP245 and SSP585, respectively. Our findings highlight the risk of increased future water scarcity across MLE caused by large-scale climatic drivers, compounding the impacts of human activities.more » « less
-
EmrE is anEscherichia colimultidrug efflux pump and member of the small multidrug resistance (SMR) family that transports drugs as a homodimer by harnessing energy from the proton motive force. SMR family transporters contain a conserved glutamate residue in transmembrane 1 (Glu14 in EmrE) that is required for binding protons and drugs. Yet the mechanism underlying proton-coupled transport by the two glutamate residues in the dimer remains unresolved. Here, we used NMR spectroscopy to determine acid dissociation constants (pKa) for wild-type EmrE and heterodimers containing one or two Glu14 residues in the dimer. For wild-type EmrE, we measured chemical shifts of the carboxyl side chain of Glu14 using solid-state NMR in lipid bilayers and obtained unambiguous evidence on the existence of asymmetric protonation states. Subsequent measurements of pKavalues for heterodimers with a single Glu14 residue showed no significant differences from heterodimers with two Glu14 residues, supporting a model where the two Glu14 residues have independent pKavalues and are not electrostatically coupled. These insights support a transport pathway with well-defined protonation states in each monomer of the dimer, including a preferred cytoplasmic-facing state where Glu14 is deprotonated in monomer A and protonated in monomer B under pH conditions in the cytoplasm ofE. coli. Our findings also lead to a model, hop-free exchange, which proposes how exchangers with conformation-dependent pKavalues reduce proton leakage. This model is relevant to the SMR family and transporters comprised of inverted repeat domains.more » « less
An official website of the United States government
